Using machine learning to classify LE erosion

Loek van der Linde

lecturer & researcher

manager Data Science lab @ Joint Research Centre Zeeland

WHERE STUDENTS MATTER

Work Package 6.2 – Classification of arbitrary data into categories

Class	Name	Depth (mm)	Area (mm)	Images from Gaudern, A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. Doi: 10.1088/1742-6596/524/1/012031
1	Small pits	< 0.2	< 2	
2	Pits	< 0.2	2 - 5	180811202505050505061025050505050505050505050505050505050505
3	Small gouges	0.3 – 0.5	5 - 20	
4	Gouges	0.5 – 0.8	20 - 50	
5	Delamination	> 0.8	> 50	missing with
				OF APPLIED SCIENCES

Approach

- Slices of 10 laser lines
 - +/- 10 millimeter
- Three machine learning models:
- 1. Logistic regression
- 2. Support Vector Machine
- 3. Random Forest

Annotated erosion on blade

Class 2 erosion

Results – Support Vector Machine

Sample size: 33 slices

 Accuracy:
 63.6% ▲

 Precision:
 64.1% ▲

 Recall:
 69.1% ▲

		Class 0	Class 1	Class 2
ACIUAL	Class 0	13	0	1
	Class 1	4	0	0
	Class 2	7	0	8

Accuracy:	how many correct?
-----------	-------------------

- Precision: how many predicted classes are actually of that class?
- Recall: how many actual classes did we find?

PREDICTED

Conclusions

Machine learning

- Support Vector Machine works best*
- Results aren't stellar but better than expected
- More data = (very very probably) better results

* Technical questions? Please find me and I'll share code!

Conclusions

Process

- Able to classify 5 different categories of erosion
- Able to prove workflow leads to usable results
- Able to prove that machine learning can detect small patches of erosion
- Online processing seems difficult given processing times + energy consumption
- Offline/offloaded processing might be good enough

Any questions? Find me here or get in touch!

loek.linde@hz.nl

Want to do a project with us and our students? Let us know! Martijn.molenaar@hz.nl

WHERE STUDENTS MATTER

