

Literature Survey on Wind Turbine Blade Inspection Techniques

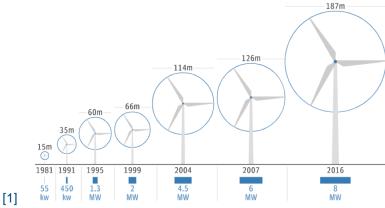
Jason Hwang | Blade Maintenance Workshop | 22 July 2021

AIRTuB Roadmap & Inspection part of story

Typical Damage Modes

External Damage Inspection Methods

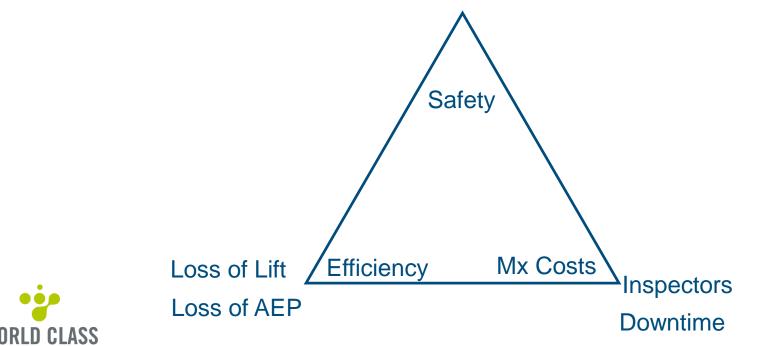
Internal Damage Inspection Methods



ເກເຕ

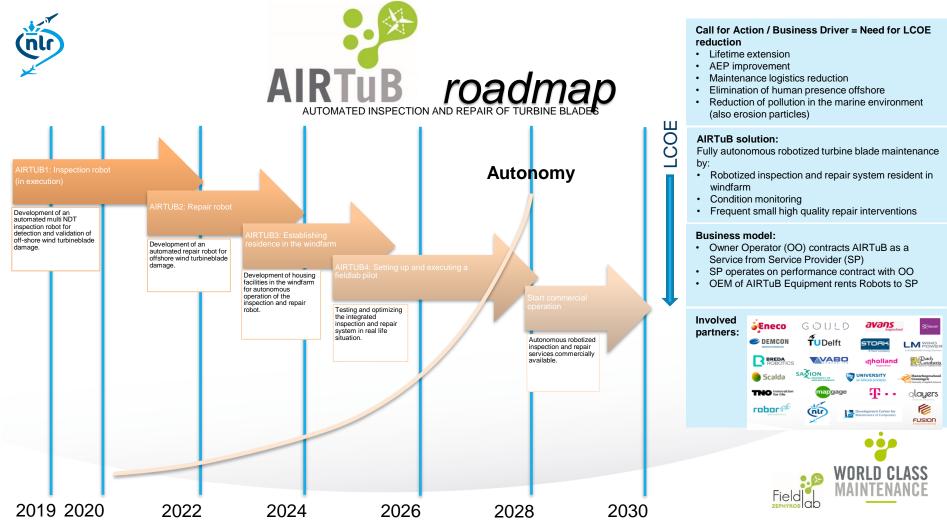
AIRTuB Roadmap

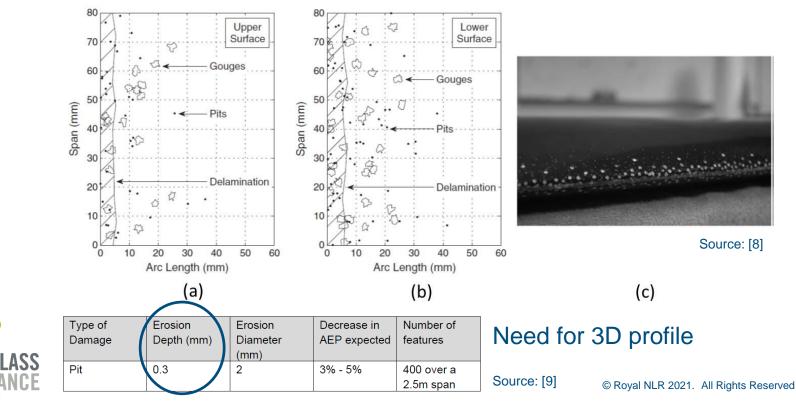
Source: [2]


Source: [4]

Balancing Between Safety, Efficiency and Mx Costs

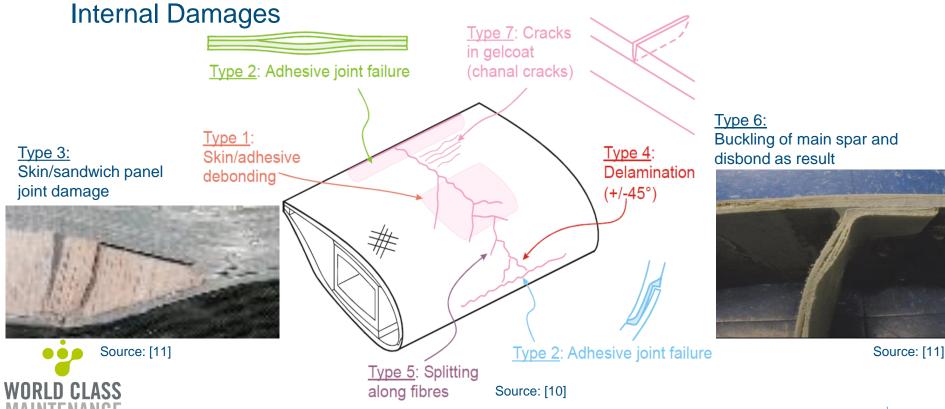
nl


Structural damage



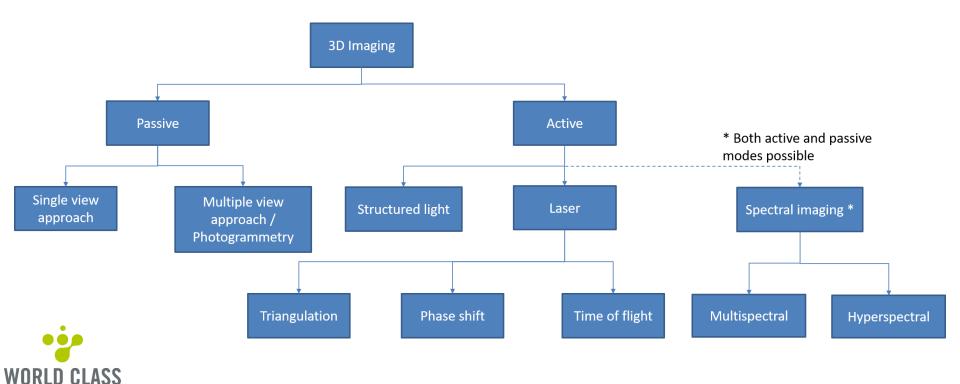
9

Inspection of Wind Turbine Blade External Damages


nu

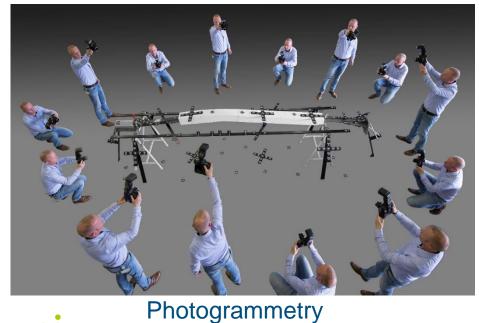
Inspection of Wind Turbine Blade

nl


Inspection of Wind Turbine Blade Internal Damages

Туре	Location	Depth (mm)	Length (mm)		
Structural Gelcoat (type 7)	Trailing edge	0	Hairline, 100		
delamination in root laminate (type 4)	20% inboard	75	100		
delamination in outer skin-core bond of sandwich (type 3)	60% inboard, sandwich panels between spar caps and leading/trailing edge	2 – 5	100		
bondline tunneling or disbond cracks (type 1 and 2)	web-spar cap, leading/trailing edge	0 - 30	hairline (tunneling) or 25 (disbond)		
Source: [9] © Royal NLR 2021. All Rights Reserved 11					

External Damage Inspection Methods 3D Imaging Techniques



© Royal NLR 2021. All Rights Reserved 13

Structured Light

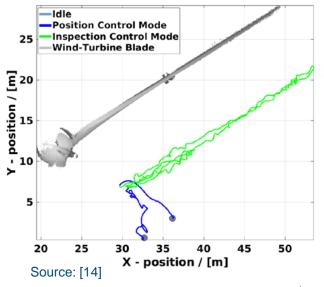
© Royal NLR 2021. All Rights Reserved 14

3D Imaging Techniques

Source: [12]

JP

3D Imaging Techniques Strengths and Weaknesses


WORI

Imaging method	Strength	Weakness
Photogrammetry	 Miniaturization 	 Visual characterization required Depth resolution
Structured Light	 Accuracy from 10 µm 	Light conditionSensitive to vibration
Laser Line Scanner	 Accuracy from 10 µm Miniaturization 	 Surface condition
LIDAR	RobustnessFlexible measurement distance	 Accuracy
TENANCE		© Royal NLR 2021. All Rights Reserved 16

3D Imaging Techniques Conclusions

- Triangulation laser has best potential to fulfill required erosion target for AIRTuB project
- There are three aspects to be dealt with
 - Effect of vibration
 - Effect of surface condition
 - Location of each measurements

Internal Damage Inspection Methods Non-Destructive Inspection

Non-Destructive Inspection Methods Overview

Inspection Characteristic		NDE technique						
		Visual	Tap Test	Bondmaster	Ultrasonic Inspection			Thermography
			Woodpecker	PC Swept/RF	Acoustocam	UT-PA	RapidScan	Lockin/Transient
	Impact	+	+	0/+	+/++	++	++	+
Detection	Delamin.	-	0	0	++	++	++	-/0
	Disbond	-	0	0	+	+/++	++	0/+
Defect sizing		-	0	0	+	++	++	+
Depth estimation					+	++	++	5-1
Portability		++	++	++	+	+	+	0
Field of vi	ew	~1 m2	Spot	Spot	25 mm2	68 mm	50-100 mm	~1 m2
Couplant	required	No	No	No	Yes	Yes	Minimal	No
Inspection	1 speed	++	0	0	+	+	+	++
Level of tr	aining	Low	Low	High	Medium	High	High	High
Equipm. c	osts [k€]	0	< 10	12-15	40-60	40-60	95-110	130-150

(nlr

Source: [15]

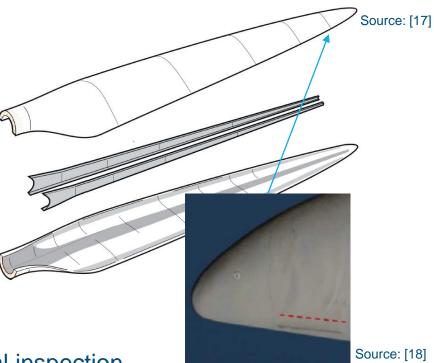
Non-Destructive Inspection Methods Overview

(nlr

٠

WORI

Method	Spar Cap	Spar Cap to Shear Web Bond Line	Leading & Trailing Edge	Sandwich Structure	Deep Subsurface Flaws	Near Surface Flaws	Technology Readiness Level (TRL)
Microwave	Good	Satisfactory	Limited	Good	Good	Good	7-8
Shearography	Satisfactory	Poor	Limited	Excellent	Insufficient	Good	9
Terahertz Radiation	*	*	Excellent	Excellent	*	*	7
Oblique Incident Ultrasonics	Good	Good	*	*	*	*	8-9
Pulse Echo Ultrasonics	Excellent	Excellent	Satisfactory	Insufficient	Excellent	Good	9
Phased/Linear Array Ultrasonics	Excellent	Excellent	Satisfactory	Insufficient	Excellent	Good	9
Air Coupled Ultrasonics	Good	Good	Good	Good	Good	Good	7-8
Pulsed Thermography	Limited	Poor	Limited	Excellent	Insufficient	Good	9
Lock-In Thermography	Limited	Poor	Limited	Excellent	Insufficient	Good	7-8
Millimeter Wave	*	*	*	Good	*	*	5-6



Non-Destructive Inspection Methods Damage Types and NDI Methods

Туре					
Structural Gelcoat (type 7)					
delamination in root laminate (type 4)					
delamination in outer skin-core bond of sandwich (type 3)					

bondline tunneling or disbond cracks (type 1 and 2)

nl

Viable methods: Visual inspection

Structural Gelcoat (type 7)

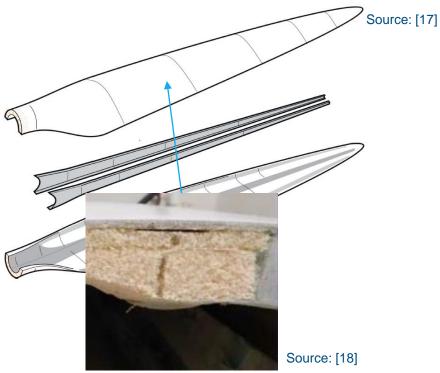
delamination in root laminate (type 4)

delamination in outer skin-core bond of conduish (type 3)

bondline tunneling or disbond cracks (i

Viable methods: ultrasonic inspection

Source: [18]

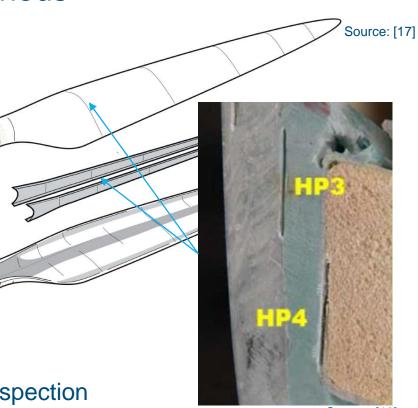

Viable methods: none

Non-Destructive Inspection Methods Damage Types and NDI Methods

TypeStructural Gelcoat (type 7)delamination in root laminate (type 4)delamination in outer skin-core bond of sandwich (type 3)

bondline tunneling or disbond cracks (type 1 and 2)

Viable methods: thermography inspection


	Т	

Structural Gelcoat (type 7)

delamination in root laminate (type 4)

delamination in outer skin-core bond of sandwich (type 3)

bondline tunneling or disbond cracks (type 1 and 2)

Viable methods: ultrasonic inspection

(nlr

Conclusions

- AIRTuB: Fully autonomous inspection, repair and maintenance of offshore wind turbines
- External and internal damages relevant to AIRTuB established
- External inspection:
 - Laser scan has best potential to fulfill the requirement
 - Open questions remain
- Internal inspection:
 - No single-solution available, tailoring to the wind blade design

Credits

The project is executed with subsidy from Topsector Energy part of Ministry of Economic Affairs

Literature Study Report Go to: http://hdl.handle.net/10921/1559

- [1] European Union (2016). "Future Energy Industry Trends", Interreg North Sea Region, northsearegion.eu/northsee/eenergy/future-energy-industry-trends,
- [2] Sørensen, B.F., Toftegaard, H., McGugan, M., Pereira, G.F. and Branner, K. (2015). "Very Large Wind Turbine Rotor Blades Require Damage Tolerance and Damage Monitoring", Poster session presented at EWEA Offshore 2015 Conference, Copenhagen, Denmark
- [3] Froese, M. and Rook, B. (2018). "The Cold, Hard Truth about Ice on Turbine Blades", Windpower Engineering & Development, windpowerengineering.com/the-cold-hard-truth-about-ice-on-turbine-blades
- [4] Sharpley, N., Tcherniak, D. and Hansen, J.J. (2015) "Algorithms Simplify and Predict Blade Maintenance", Windpower Engineering & Development, windpowerengineering.com/algorithms-simplify-and-predict-blade-maintenance
- [5] Krankenhagen, R. (2015). "Infrarot-Kameratechnologie zur beruhrungslosen Analyse von Rotorblattern unter Hoch-See-Bedingungen", Poster presentation BAM, IKARUS Project
- [6] Fauteux, L. and Jolin, N. (2018). "Drone Solution for Wind Turbine Inspections: Overview of Cutting-Edge Solution for Wind Farm O&M Industry", NERGICA Renewable Energy Research and Innovation, December 2018
- [7] Sandia National Laboratories (2019). "Don't set it and forget it scan it and fix it with tech that detects wind blade damage" Press release, 24 June 2019, newsreleases.sandia.gov/wind_robots

- [8] Sareen, A., Sapre, C.A. and Selig, M.S. (2014). "Effects of Leading Edge Erosion on Wind Turbine Blade Performance", Wind Energy 2014; 17: 1531-1542
- [9] Nijssen, R. and Manrique, E. "Literature Review of Structural and Non-Structural Wind Turbine Blade Damage", TNO report, August 2020
- Sørensen, B.F., Jørgensen, E., Debel, C.P., Jensen, F.M., Jensen, H.M., Jacobsen, T.K. and Halling, K.M. (2004)
 "Improved Design of Large Wind Turbine Blade of Fibre Composites Based on Studies of Scale Effects" Phase 1 summary report, Risø-R-1390(EN), Risø National Laboratory, Denmark, September 2004
- [11] Roach, D., Rice, T. and Paquette, J. (2017). "Probability of Detection Study to Assess the Performance of Nondestructive Inspection Methods for Wind Turbine Blades", Sandia National Laboratory report SAND2017-8032X, August 2017
- [12] Micro-Epsilon (2020). "Applications for 2D/3D Laser Scanners", https://www.micro-epsilon.com/2D_3D/laserscanner/applications/ (accessed: 17-dec-20)
- [13] Daly, S. (2019). "Australia's Emesent launches Hovermap drone payload at International LiDAR Mapping Forum", The C-Drone Review, 4-Feb-2019, c-drone-review.news/en/2019/02/04/australias-emesent-launches-hovermap-dronepayload-at-international-lidar-mapping-forum/ (accessed: 16-Dec-20)

- [14] Car, M., Markovic, L., Ivanovic, A., Orsag, M. and Bogdan, S. (2020). "Autonomous Wind-Turbine Blade Inspection Using LiDAR-Equipped Unmanned Aerial Vehicle", IEEE Access, 8, 131380-131387, doi: 10.1109/ACCESS.2020.3009738
- [15] Heida J.H., Platenkamp D.J. (2010) "Evaluation of non-destructive inspection methods", NLR-CR-2010-076
- [16] Roach, D., Neidigk, S., Rice, T., Duvall, R. and Paquette, J. (2015). "Development and Assessment of Advanced Inspection Methods for Wind Turbine Blades Using a Focused WINDIE Experiment", Proceedings of 33rd Wind Energy ySmposium, 5-9 January 2015, Kissimmee, FL
- [17] Mishnaevsky, L., Branner, K., Petersen, H.N., Beauson, J., McGugan, M., and Sørensen, B.F. (2017). "Materials for Wind Turbine Blades: An Overview", Materials; 10(11)
- [18] Ray Ely, G., Roach, D.P., Rice, T.M., Nelson, G.D. and Paquette, J. (2018). "Development and Evaluation of a Drone-Deployed Wind Turbine Blade Nondestructive Inspection System", Sandia National Laboratories report, SAND2018-3116

Fully engaged NLR - Netherlands Aerospace Centre

Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands

p)+31 88 511 31 13 e) info@nlr.nl i) www.nlr.org Voorsterweg 31 8316 PR Marknesse The Netherlands

p) +31 88 511 44 44
e) info@nlr.nl i) www.nlr.org