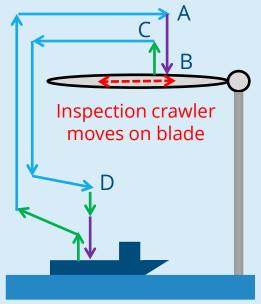


- AIRTuB inspections
- AIRTuB development
- Development of the drone
 - Size
 - Safe operation
 - Development
- Demonstration

Arjan, Marco and Martin

- 1. Take off from ship (manual)
- 2. Fly to A via waypoints
- 3. At A: locate blade (position/orientation) Fly to B to start measurement
- 4. Fly to C at 1.3 -1.7m above Leading Edge
- 5. Fly away from blade to D
- 6. Fly to E via waypoints
- 7. Locate landing area sensor (IR)
- 8. Land on ship


A D C Leading Edge measurement

Inspection internal structure

- 1. Take off from ship (manual)
- 2. Fly to A via waypoints
- 3. Locate blade (pos/orientation), fly to B and land
- 4. Land on blade (and stay on blade)
- 5. Disconnect crawler and start crawling
- 6. Inspection by crawler+sensor
- 7. Return to drone, connect to drone
- 8. Take-off
- 9. Fly to D via waypoints
- Locate landing area sensor (IR)
 Land on ship

Drone

- Large + heavy drone Perform Hi Risk operation (distance, mass) Land and stay on curved blade (landing gear, suction)
- Positioning
(Demcon)Detection of position & orientation windturbine
LE-inspection: accurate flightpath above blade

Flightcontroller (Fusion)

- Follow flight path with high accuracy (wind gust)
- New INDI technique, new H/W, S/W, special ESC Internal inspection: Land on exact point on blade

Crawler (HZ) Develop & transport crawler, (dis)connect

finally: integrate all systems in drone and ensure legal & safe operation

5

A. Leading Edge Payload : 5 kg Flying Laser line scanner 1.3-1.7m above LE expected 30min flight

B. Internal structure Payload: **15kg** Bring crawler+sensor, land on blade attach to blade, (dis)connect crawler

Weight: 15 kg payload 7 kg additional AIRTuB equipment 18 kg drone <u>20</u> kg battery 60 kg Max Take-off Mass

1-2kg	MTOM	60kg
30cm	size	3 m
300%	overpower	50%

- High amperages
- high inertial moment, less overpower
 - less easy to correct
- structure drone

NL CAA register (2020) In total ca 2500 drones, 96% < 10kg only 3 'fit to fly' rotary with MTOM >30kg

Ensure legal and safe operation

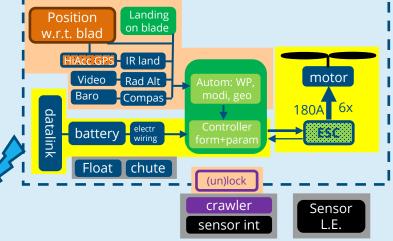
Operator: mandatory 'permit to fly from NL-CAA' and Insurance (EU785/2004)

• NL-CAA : air+ground risk, focus on uninvolved people (< 10-4/flighthour + evidence)

Video

Select WP, modi

ontrols


datalink

- Insurance : 3th party, financial damage (>> 1 M€)
- Ourselves : Loss of drone & sensor, AIRTuB crew

Evidence: # flight hours or substantiation via

- Safety analysis of drone & (sub)components
- Design, manufacturing, test
 - material, complexity, robustness, similar systems
- Proven reliability -> flight hours needed (<<10.000)
- Training (procedures, crew)

Phases in development and integration

Marknesse (EHR66): testing (sub)systems and integration

- With small windturbine blade for testing
- Testbed (smaller version, easier, cheaper)
 - 1. Build and test subsystems drone
 - 2. Testbed with conventional flightcontroller (check system)
 - 3. Fusion flightcontroller initial tuned
 - 4. Demcon positioning + 'Fusion land' and test
 - 5. Training, build track record
- AIRTuB drone
 - Repeat 1, 2-5
 - Integrate LE sensor and test
 - Integrate crawler and test

On-shore inspection: rehearsal for offshore

Offshore inspection: measurements for AIRTuB

Timeline made to start first measurement in jan-2022

NLR

- Testbed & AIRTuB drone ready for flightcontroller, (sub)component developments
- Preparations integration and offshore measurement

Research project with challenging developments:

- Delay at partner: development drone on hold, no inspections at windturbine possible
- Scope change (1st Sept 2022): develop subsystems to the highest possible level

NLR after scope change:

- Use conventional flightcontrollers and continue development and integration
- 2nd testbed at NLR to continue with 'other work' (1st testbed at Fusion for tuning)
 - test, training & integration LE sensor
- AIRTuB drone
 - Tune flightcontroller and fly drone and prepare for crawler

AIRTuB drone 60kg drone, conventional flight controller fly with payload (max 15kg) crawler disconnecting

2nd Testbed payload Leading Edge sensor (with limited flighttime) demonstrate LE-inspection

(Fusion demo: 1st testbed empty, initially tuned)

Small drone (5kg)land via IR marker
land on curved blade
stay on blade(on ship)
(landing gear)
(suction system)

(HZ+ TU-D demo: inspection with crawler)

Flying drones can be dangerous: safety instructions

Questions?

PH-1A

chu

martin.joosse@nlr.nl