

Innovation Fieldlab Zephyros

Towards Zero downtime and Zero on-site maintenance

AIRTuB Problem definition

Blade damage (leading edge and structural) leads to:

- (Manual) inspections
- Vessel movements
- Aerodynamic losses, lower AEP
- Expensive repairs
- Reduced up-time

Solution:

Automated inspection and early repair Resident drone and crawler

load carrying box

Roadmap of AIRTuB program

AIRTuB 1 (ongoing, Sept 2019 - Dec 2022)

Automated blade inspection with drone/crawler

Automated damage classification

Relation LE erosion vs. annual energy production (AEP)

Asset management strategy

Robotized LE coating (labprototype)

AIRTuB 2 (submitted August 2020)

Robotized Leading Edge repair

Drone residency at turbine (docking station)

Aerodynamic performance of LE repairs

Development of repair recipes Certification of repairs

AIRTuB 3 (to be developed)

Advanced prototyping Optimization Miniaturization Demonstration?

Commercial application

Levelised cost of energy (LCOE) impact

AIRTUB

• Avoiding vessel movements and on-site man-power:

- Inspections and repair by rope access is costly
- Availability of man-power gets more critical given the anticipated scale-up in WPP's
- Avoiding vessel movements is extremely cost- and emission effective
- Estimated effect: -2% reduction in OPEX

• Less downtime:

- Inspection and repair by resident robots is faster
- Avoids weather windows (with a resident drone)
- Expected to lead to an increase in AEP of 0,1%
- Higher AEP due to less blade erosion:
 - More frequent inspections and repairs reduces grade of damage
 - Estimated increase in production of 2%

Sensor package development

Workpackage 1

• Solid foundation for business cases of drone/crawler inspection.

Iniversity of Applied Sciences

- Design criteria sensors the minimum size of damages to be detected.
- Sensor development:
 - 3 D camera; laser line scanner
 - Utrasound, terahertz technology
- Blade damage classification:
 - State of the art wind turbine rotor blade design?
 - Relation design philosophy wind turbine rotor blades & inspection/maintenance/repair?
 - Damages in field; locations and sizes?
 - Damage effect on wind turbine operation?
 - Erosion/roughness measurement on wind turbine rotor blades?
 - Impact erosion/roughness on aerodynamic performance?
 - Blade erosion affecting structural blade properties?

Туре	Location	Minimum detectable depth [mm]	Minimum detectable diameter [mm]	Motivation
Leading Edge Erosion (LEE)	20-30% outboard, leading edge. Superficial	0.3	2	Affected AEP
Lightning	Near receptors (blade tip and mid-airfoil, pressure and suction side, black spots)	0	15	Typical lightning damage, repairable
Structural (gelcoat cracks indicating deeper damage)	Trailing edge	0	Hairline, 100mm length	Larger than Quality Assurance
Structural (delamination in root laminate)	20% inboard	75	100	Larger than Quality Assurance
Structural (delamination in outer skin-core bond of sandwich)	60% inboard, sandwich panels between spar caps and leading/trailing edge	2-5	100	Larger than sandwich block grid size
Structural (bondline tunneling or disbond cracks)	Web-spar cap, leading/trailing edge	0-30	Hairline (tunneling) or 25 (disbond)	Larger than Quality Assurance

5

© Royal NLR 2020 – All rights reserved

Thermography

Drone & Crawler Development

Workpackage 2 & 3

Artist impression pictures courtesy of NLR[©]

Goal:

- Drone and Crawler development
 - Bringing sensor packages to the blade
 - 3D visual inspection or laser line scan
 - Structural damage inspection (crawler!)

• Developments:

- Existing drone adaptation
 - Reliability, robustness,
 - Safety; a.o. parachute & floating device
- Flight controller for wind gusts
- Path planning: lidar sensor
 - Keeping track of leading edge/turbine blade
- Crawler development for structural damage inspection sensor
- Test & demonstration indoor/outdoor; onshore & offshore demo

Artist impression pictures courtesy of NLR[©]

ทน

Data analysis development

Workpackage 4

Princess Amalia - WPQ7-30 | Erosion - Severity 2

10101		Turb	Turbine Information		
		Manufacturer	Vestas		
10.11		Model	V80		
		Latitude	52.5817552264286		
		Longitude	4.24583791257143		
		Hub Height			
		Rotor Diameter			
		Blade A Serial	51216 (Unconfirmed)		
		Blade B Serial	51462 (Unconfirmed)		
		Blade C Serial	51387 (Unconfirmed)		
	100	Dam	ge Information		
	-	Number	QI5PPQ7G-0		
		Blade	A		
	100	Date	2020-05-28		
		Туре	Erosion		
	and the second	Width	0.03		
		Length	0.21		
		Distance	37.3		
-	1000	Material	Top Coat		
	Film	Severity	2		
		Component	Blade		
		Blade Side	Leading Edge		
		Inspection Date	2020-05-28		
		Inspection Time	01:09:32		

- Goal:
 - Learning from data
 - Impact damage on Annual Energy Production
 - Cost: operation & maintenance
- Steps:
 - Acquisition
 - Cleaning
 - Enrichment
 - Data storage (no live streaming)
- Data Sources:
 - Historical Performance data
 - Operations
 - Maintenance

Repair Technology development

Workpackage 5

- Goal:
 - Renewal of Leading Edge Protection
 - Automated alternative for manual repair
- Parallel development:
 - Lab demo of repair technology
 - Development will start soon
- Process steps:
 - Pretreatment necessary?
 - Printing
 - Curing
- Wind tunnel testing:
 - Effect of protection on aerodynamic efficiency

E are

S were

- Goal:
 - Estimate loss Annual Energy Production (AEP) related to erosion
 - Decision tool for repair strategy
- Aerodynamic modelling of erosion:
 - Validation against existing and new wind tunnel measurements

Heavy erosion

Business model development

Workpackage 7

- Goal:
 - New Asset Management Strategy
 - business models
- Business Goals and baseline definition:
 - Current cost level
- Development of new Strategy scenarios:
 - Comparison analysis
 - Benefits, Investment, Risk analysis for 2 scenarios comparwith the baseline
 - Report of overall results

AIRTuB programme Dutch innovators are welcome to join!

jEneco GØULD avans **T**UDelft DEMCON STORK WIND POWER advanced mechatronics a GE Renewable Energy business A Fluor Company BREDA ROBOTICS Dutch inholland Jerahertz SACION Hz UNIVERSITY Scalda Hanzehogeschool Groningen UNIVERSITY OF OF APPLIED SCIENCES APPLIED SCIENCES University of Applied Sciences **T**... **TNO** innovation for life mapgage qlayers robor າງແ) Development Center for Maintenance of Composites electronics

