

AIRTuB Laser line scanning for leading-edge erosion inspection

Andrei G. Anisimov a.g.anisimov@tudelft.nl

Anisimov, et. al, "AIRTuB: towards automated inspection of leading-edge erosion of wind turbine blades by shape analysis", Proc. SPIE 11785, Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, 1 117850W

AIRTuB Laser line scanning for leading-edge erosion inspection

Andrei G. Anisimov a.g.anisimov@tudelft.nl

Anisimov, et. al, "AIRTuB: towards automated inspection of leading-edge erosion of wind turbine blades by shape analysis", Proc. SPIE 11785, Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, 2 117850W

AIRTuB Laser line scanning for leading-edge erosion inspection

Andrei G. Anisimov a.g.anisimov@tudelft.nl

Anisimov, et. al, "AIRTuB: towards automated inspection of leading-edge erosion of wind turbine blades by shape analysis", Proc. SPIE 11785, Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, 3 117850W

Requirements

ŤUDelft

Type of Damage	Erosion Depth (mm)	Erosion Diameter (mm)	Decrease in AEP expected	Number of features
Pit	0.3	2	3% - 5%	400 over a 2.5m span

- A Literature Survey on Remote Inspection of Offshore Wind Turbine Blades: Automated Inspection and Repair of Turbine Blades (AIRTuB) - WP1 Hwang, J.S., et. al. Netherlands Aerospace Centre NLR 2021-05 http://hdl.handle.net/10921/1559
- Nijssen, R. and Manrique, E. "Literature Review of Structural and Non-Structural Wind Turbine Blade Damage", TNO report, August 2020

https://www.worldclassmaintenance.com/project/fieldlab-zephyros/

https://www.worldclassmaintenance.com/sub-project/airtub-automatische-inspectie-reparatie-van-turbinebladen/

What is now?

High TRL

Available now

Robust (IP65)

Distance 1.5+ m

Resolution ≈ 0.1-0.2 mm

Error: 0.5 mm (3 STD)

• Error: 0.3 mm (3 STD)

Lyngby, R. A., Development and metrological validation of a new automated scanner system for freeform measurements on wind turbine blades in the production. 2019 Wang, J., A mobile robotic measurement system for large-scale complex components based on optical scanning and visual tracking. 2021 Zhang, D. Remote inspection of wind turbine blades using UAV with photogrammetry payload. 2017

- Error: 5+ mm (3 STD)
- Market: multiple options for visual inspection
 - Lidar
 - Photogrammetry is coming

Measurement approach

CN
S:
High TRL
Available now
Robust (IP65)
Resolution ≈ 0.1-0.2
Distance 1.5+ m
Measuring range

Resolution

Number of points

Dimensions [mm]
 Width

Height

Length

Frequency [Hz]

Weight [kg]

Error Z

Safe flight
 Coordinates?

 orientation

 mm Vibrations

 Mass/power

Drone issues:

- AutonomousWeather
- RF629 Riftek
- 490 mm @1310 mm 680 mm @1900 mm
- •X @ midrange [mm] 0.2 or Z 0.05% of the distance (0.8 mm @ 1600 mm)
 - 1280 (2560) 2000 4.0

64

125

680

≈40 m long

Measurement approach

ŤUDelft

Inputs: High TRL Available now

- Robust (IP65)
- Resolution ≈ 0.1-0.2 mm
- Distance 1.5+ m

- Measuring range
- Resolution
- •X @ midrange [mm

Number of points

Frequency [Hz]

Weight [kg]

Error Z

- ance mm)
- 1280 (2560) 2000 4.0

64

125

680

- Dimensions [mm] Width Height
 - Length

	10 1000001
•	Safe flight
•	Coordinates?
	orientation
•	Vibrations
•	Mass/power
•	Autonomous
•	Weather
RF	629
Rif	tek
49) 68)	0 mm @1310 mm 0 mm @1900 mm
0.2 0.0 (0.4	2 05% of the distance 8 mm @ 1600 mm)
	• • • • • • • • • • • • • • • • • • •

Erosion map (a)

Reference?

(d)

[mm]

0.70 0.45 0.30 0.15 0.00 -0.15 -0.30 -0.45 -0.70

-0.2

Deviation map, RF629, Riftet

Discussion

- Quantitative erosion inspection?
 - Feasible with laser line scanners
 - mm and sub-mm range
- Drone-based
 - testing now
- AI/ML
 - Relevant reliable dataset
- Drone *issues*
 - Safe flight:
 - Coordinates
 - Mass/power
 - Integration
 - Vibrations
 - Weather
 - Drone

- Point cloud reconstruction = orientation the main challenge *Oversampling* at low speed Engineering and collaborating On the way Preliminary tests: clear effect, detection possible
- To be tested

1.3..1.9 m

6 kg

AIRTuB

Laser line scanning for leading-edge erosion inspection

Andrei G. Anisimov a.g.anisimov@tudelft.nl

Anisimov, et. al, "AIRTuB: towards automated inspection of leading-edge erosion of wind turbine blades by shape analysis", Proc. SPIE 11785, Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, **11** 117850W