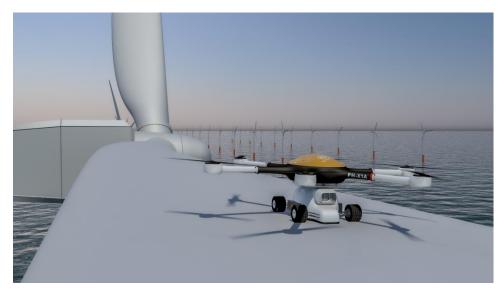


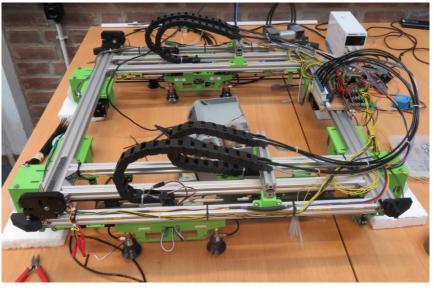
.....

Field


ZEPHYROS

Innovation Fieldlab Zephyros

Towards Zero downtime and Zero on-site maintenance



Courtesy of NLR

Vlissingen, 22 September 2022 Jos Gunsing, MaromeTech on behalf of HZ UAS

Crawler stage 1

Crawler stage 2

- Demcon; lidar development and path planning
- Fusion Engineering; flight controller
- Eneco; maintenance data and test planning/facilities
- With support of:

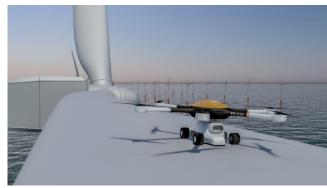
Test program

- TU Delft: sensor integration in drone and crawler
- LM Windpower; turbine blade knowhow

a GE Renewable Energy business

Team HZ and Scalda for crawler development

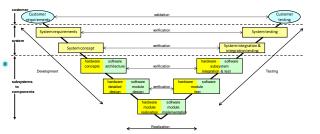
- 100+ students in 20+ teams
- Coached by teacher/researchers from HZ and Scalda:



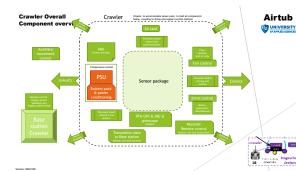
Starting from scratch

- Task:
 - Development Drone:
 - Carry external damage sensor
 - Carry Crawler with internal damage sensor
 - Development Crawler:
 - Carry internal damage sensor
- Key question for all AIRTuB involved parties:
 - Definition of:
 - minimum defect size to be detected;
 - \rightarrow type/size of sensor
 - in combination with required autonomy (in this case time)
 - → type/size of crawler
 - → type/size of drone

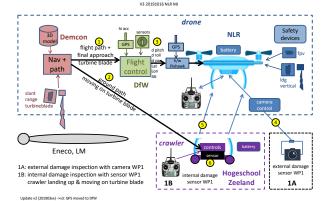
Courtesy of NLR



Courtesy of NLR



Approach of crawler development

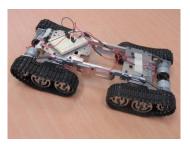

- Process
 - Definition of preliminary maximum size/volume and mass based on minimum defect size
 - Autonomy max. 30 minutes (battery life and size)
 - Sensor package max. 10 kg, crawler max 15kg incl. sensor package
 - Drone (span approx, 3m) max take off mass of 40+ kg
- Set up of use cases
 - Normal operation
 - Starting/stopping of systems
 - Extraordinary situations incl. misuse
- Parallel : business case development (AIRTuB workpackage 7)
- Definition of functions/functional decomposition incl. relation of functions
- Concepts
- Risk analysis

Airtub-1 WP2 Basic set up drone and crawler

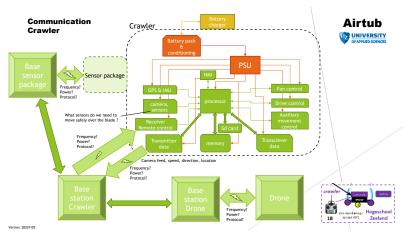
Development process

System drone-crawler-sensor package

Functions crawler


Feasibility models; examples

Risk analysis/concepts:

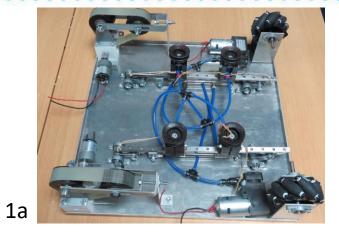

- Feasibility models
 - Suction systems
 - Navigation accuracy
 - Drive system control/steerability
 - Remote control
 - Canera systems including live streaming
- Travelling on turbine blade
 - Type of movement
 - Holding in combination with moving
 - "Meandering" over region of interest; scanning in one direction
 - Size of region of interest approx. 1 m²
 - Accuracy of travel; cm-range
- Communication of :
 - drone, crawler and sensor packages with respective base stations
 - Commercially available components whn possible

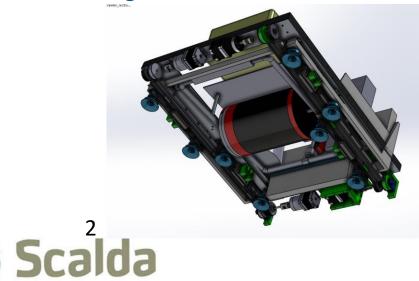
Communication crawler

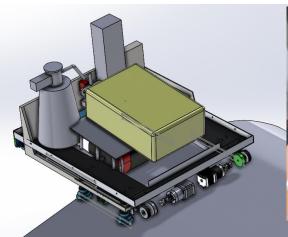
Crawler stage 1

Student groups from both HZ and Avans Hogeschool (Breda) developed both in parallel:

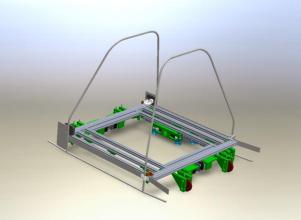
- Crawler stage 1a; Avans Hogeschool (Breda)
- Crawler stage 1b; Hogeschool Zeeland






Several generations crawler

- Results:
 - Crawler stage 1a
 - Crawler stage 1b
 - Crawler stage 2


- Use cases:
 - Normal behaviour
 - First steps
 - (Un-)Locking mechanism from/to the drone
 - Several concepts;

Work in progress/future outlook

- Ongoing:
 - Business case confrontation
 - Costs versus benefits
 - Test equipment ; turbine blade on trailer ; testing under different positions/conditions
- Future outlook:
 - Further research (in line with roadmap AIRTuB):
 - Extension to other types of damage inspection
 - Lightning damage
 - Internal damage inspection of leading edge
 - Extension to maintenance/repair
 - Resident drone/crawler plus sensor and repair packages in windpark
 - Research/development parallel to business case development
 - Always open for alternative solutions
 - Avoiding inspection & repair
 - Alternative solutions for turbine blade inspection and repair
 - E.g. cable/umbillical operated crawler i.s.t. drone/crawler combination

