
Prof. dr. ir. Tiedo Tinga

Life Cycle Management

T.Tinga@mindef.nl

Nederlandse Defensie AcademieNetherlands Defence Academy

Predictive Maintenance
Promises & practical challenges

Dynamics based Maintenance 

T.Tinga@utwente.nl

utwente.nl/time

WCM jaarevent ‘samen slimmer’



10/3/2025WCM jaar event

Outline

• Introduction

• Predictive Maintenance 
– Approaches

– The promise

• Challenges in (application of) PdM

• Solutions

2



17-6-2025ESREL2025 - solving PdM challenges

Introduction

• Industry & governments
– Increasing demands for availability and reliability of critical assets

– Abundant (sensor) data  Industry 4.0

• Potential & demand for data-driven maintenance

– Diagnostics  Condition based Maintenance (CBM)

– Prognostics  Predictive Maintenance (PdM)

• Despite available methods and scientific papers

 application of PdM in (industrial) practice limited
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Maintenance policies
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Prognostics – approaches

• Experience-based (traditional)
– Experience from past / collected data

 often conservative

 not always available (registration, PM)

 Not always representative

• Data-driven
– Derive relations from big data sets (e.g. sensors)

– Use AI / Machine Learning 

 Sometimes unexpected relations, but is black box

 not always representative

• Model-based
– Model of physical failure mechanism

– Input from monitored usage / loads

 Always representative, takes large effort
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Model-based: relation usage – life time

Failure 

model

Zoom in to the level of the 

physical failure mechanism

Usage
Platform / 

system
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Service life /

Damage accumul.

thermal / fluid / 

structural model

Usage monitoring

Load monitoring Condition monitoring

Prognostics
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The promise of Predictive Maintenance…

• All failures can (and will) be prevented

• 100% predictability of failures

• Data is abundant, everything is connected

• AI will solve everything
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Why limited application of PdM ?
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• Ambitioned Maturity Level vs Data Requirements
1. Detection: is something wrong?

• Anomaly Detection

• only requires unlabeled (sensor) data

2. Diagnosis: what is wrong?

• Classification 

• requires labeled data (supervised learning) for all faults

3. Health assessment: how wrong is it?

• Condition monitoring

• requires dedicated CM sensors & threshold value

4. Prognosis: when is it expected to go wrong?

• Regression, Prediction 

• requires run-to-failure data & operational history
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Two main barriers identified
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1. Mismatch ambition level and available data + knowledge
– Often unaware  frustrates developments

2. Lack of relevant data in industrial practice
– No labelling

› lack of failures & low quality registration

– No condition measurements
› not many CM sensors, indirect methods 

– No threshold value
› especially for indirect CM, often trial-and-error

– No run to failure data
› failures prevented for critical systems ( simulations, benchmark, CMAPSS)

– No operating history
› not registered, changing configurations
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Solution directions
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1. Accept
finding the most suitable approach given the (limited) data

2. Circumvent
combine limited data with physical models

3. Extend 
collect additional (relevant) data



ACCEPT 

Matching ambition and data
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Fitting PdM ambition to data

Tiddens, 2014-2017
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PdM scoring method

Silveira, 2023
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• Suitability
– match with ambition

• Feasibility
– match with data / knowledge

• Expert system
– Pre-filled with questions and scores per MT



CIRCUMVENT

Combine data & models
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Complement data with models

• Data-driven approach often infeasible
– limited failure data and lack of labelling

• Physics-of Failure models
– contain relations for degradation
– only need ‘fitting parameters’  use data 

+ Particle Filter 
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Hybrid approaches

• Combine physics/monitoring
– Physics for (long term) prediction

– Data to keep model ‘on track’

Prediction before load change Prediction after load change

Keizers, 2021
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EXTEND

Collect additional data
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Generation of labeled (failure) data 

• Missing info
– Run-to-failure part

– Condition at replacement

• Assess condition
– Experts register condition of replaced parts

– Use numerical models to translate indirect into direct CI
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Generation of labeled failure data 

• Testing in laboratory setting 
– accelerated testing + run-to-failure

– fully controlled  all potential faults

– completely labeled dataset (NLN-EMP)

• Test in field  Front runner
– Postpone PM for small fraction of systems

– Ensure to lead the fleet (age) + limit failure effects  failures !

• Benefits
– Rest of fleet  PM closer to actual life time

– Additional (sensor) data reveals patterns related to failures
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• Public datasets (CMAPSS, CWRU, FEMTO-ST, …)
- Limited # sets, with large faults

- Format & labeling heterogeneous

 Difficult to use for AI method development 

• Distributed testing
– More labeled run-to-failure data - 6 (research) organizations in NL

• Standardize labeling - ISA-PHM
– Metadata format (from biology) 

› Diagnostic / prognostic

› Fault type(s)

› Operational conditons

– Upload test data in database

– Retrieve data for modeling

– See www.ISA-PHM.com

Dutch Prognostics Lab
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Conclusion

• Predictive Maintenance has potential in increasing availability / 
reducing costs

• Ultimate ambition is 100% prediction of failures

• Both data science / AI and physics of failure play an important role

But:

• Not the easiest application field for data science

• Challenges in transfer from theory to practice (data !)

• Hybrid approaches seem to be suitable to solve this
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• Check our publications on 
– https://www.utwente.nl/en/et/ms3/research-chairs/dbm/publications/

– https://research.utwente.nl/en/persons/tiedo-tinga

Further reading
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